Correction to: Co-active neuro-fuzzy inference system model as single imputation approach for non-monotone pattern of missing data
نویسندگان
چکیده
This paper is an addendum to Ref. Neural Computing and Applications (2021) 33:8981–9004 that adds information clarify certain aspects of the models used adding some citations. In this approach based on Co-active Neuro-Fuzzy Inference System named CANFIS-ART proposed automate data imputation procedure. model compared other state-of-the-art techniques such as its baseline Artificial Network statistical methods, using a total eighteen databases exposed perturbation procedure random generation non-monotone missing values pattern. A comparison imputed by these set three classifiers were conducted.
منابع مشابه
the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملCO-Active Neuro- Fuzzy Inference System Application in Supply Chain Sustainability Assessment Based on Economic, Social, Environmental, and Governance Pillars
The main aim of this study is proposing an assessment model for evaluating the supply chain sustainability across the automotive sector. In this study, through reviewing the sustainability indicators in the economic, social, environmental, and governance pillars, the fuzzy Delphi is applied. Then, survey method is used to implement the model designed in CANFIS to evaluate the sustainability ind...
متن کاملNeuro-rough-fuzzy approach for regression modelling from missing data
Real life data sets often suffer from missing data. The neuro-rough-fuzzy systems proposed hitherto often cannot handle such situations. The paper presents a neuro-fuzzy system for data sets with missing values. The proposed solution is a complete neuro-fuzzy system. The system creates a rough fuzzy model from presented data (both full and with missing values) and is able to elaborate the answe...
متن کاملComparison of autoregressive integrated moving average (ARIMA) model and adaptive neuro-fuzzy inference system (ANFIS) model
Proper models for prediction of time series data can be an advantage in making important decisions. In this study, we tried with the comparison between one of the most useful classic models of economic evaluation, auto-regressive integrated moving average model and one of the most useful artificial intelligence models, adaptive neuro-fuzzy inference system (ANFIS), investigate modeling procedur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computing and Applications
سال: 2021
ISSN: ['0941-0643', '1433-3058']
DOI: https://doi.org/10.1007/s00521-021-06623-1